Cross-Sectional Evaluation of Grammatical Error Correction Models
نویسندگان
چکیده
منابع مشابه
Human Evaluation of Grammatical Error Correction Systems
The paper presents the results of the first large-scale human evaluation of automatic grammatical error correction (GEC) systems. Twelve participating systems and the unchanged input of the CoNLL-2014 shared task have been reassessed in a WMT-inspired human evaluation procedure. Methods introduced for the Workshop of Machine Translation evaluation campaigns have been adapted to GEC and extended...
متن کاملBetter Evaluation for Grammatical Error Correction
We present a novel method for evaluating grammatical error correction. The core of our method, which we call MaxMatch (M), is an algorithm for efficiently computing the sequence of phrase-level edits between a source sentence and a system hypothesis that achieves the highest overlap with the goldstandard annotation. This optimal edit sequence is subsequently scored using F1 measure. We test our...
متن کاملGrammatical Error Correction of English as Foreign Language Learners
This study aimed to discover the insight of error correction by implementing two correction systems on three Iranian university students. The three students were invited to write four in-class essays throughout the semester, in which their verb errors and individual-selected errors were corrected using the Code Correction System and the Individual Correction System. At the end of the study, the...
متن کاملGrammatical Error Correction
Grammatical error correction (GEC) is the task of automatically correcting grammatical errors in written text. Earlier attempts to grammatical error correction involve rule-based and classifier approaches which are limited to correcting only some particular type of errors in a sentence. As sentences may contain multiple errors of different types, a practical error correction system should be ab...
متن کاملMemory-based Grammatical Error Correction
We describe the ’TILB’ team entry for the CONLL-2013 Shared Task. Our system consists of five memory-based classifiers that generate correction suggestions for center positions in small text windows of two words to the left and to the right. Trained on the Google Web 1T corpus, the first two classifiers determine the presence of a determiner or a preposition between all words in a text. The sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Natural Language Processing
سال: 2021
ISSN: 1340-7619,2185-8314
DOI: 10.5715/jnlp.28.160